Megjelent 2025-06-25
Kulcsszavak
- járvány,
- beavatkozás tervezés,
- ágens alapú modellek
Copyright (c) 2025 István Reguly

This work is licensed under a Creative Commons Attribution 4.0 International License.
Absztrakt
A koronavírus-világjárvány rámutatott a dinamikus és pontos járványmodellezési és kezelési eszközök fontosságára. A hagyományos kompartmentális modellek különösen a járvány elején kiemelt szerepet kaptak, azonban korlátaik hamar nyilvánvalóvá váltak. Az ágens alapú modellek több szempontból is előnyösebbek: sokkal részletesebb térbeli felbontásra képesek, és pontosabban tudják reprezentálni a társadalom viselkedésének sokféleségét. Ebben a tanulmányban áttekintjük az ágens alapú modellek előnyeit és a használatukkal kapcsolatos tapasztalatokat, különös tekintettel a korosztályokra vonatkozó intézkedésekre, mozgáskorlátozásra, és más olyan beavatkozásokra, amelyek hagyományos módszerekkel nem leírhatók. Kiemeljük a valós adatokhoz való kalibráció és validáció fontosságát, és ezek kihívásait. Végül bemutatjuk a Pázmány Péter Katolikus Egyetemen létrejött járványmodellező csoport munkáját, tapasztalatait.
Hivatkozások
- Alvarez, L., Rojas-Galeano, S. (2020). Simulation of Non-Pharmaceutical Interventions on COVID-19 with an Agent-based Model of Zonal Restraint. medRxiv, 2020.06.13.20130542; https://doi.org/10.1101/2020.06.13.20130542
- Bobashev, G., Goedecke, D., Yu, F., & Epstein, J. (2007). A Hybrid Epidemic Model: Combining The Advantages Of Agent-Based And Equation-Based Approaches. In: 2007 Winter Simulation Conference, 1532-1537. o. https://doi.org/10.1109/WSC.2007.4419767
- Buhat, C., Lutero, D., Olave, Y., Torres, M., & Rabajante, J. (2020). Transmission of Respiratory Infectious Diseases between Neighboring Cities using Agent-based Model and Compartmental Model. medRxiv 2020.06.24.20138818; https://doi.org/10.1101/2020.06.24.20138818
- Csutak, B., Polcz, P., & Szederkényi, G. (2021). Computation of COVID-19 epidemiological data in Hungary using dynamic model inversion. In: 2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, 91-96, o. https://doi.org/10.1109/SACI51354.2021.9465563
- Doussin, B., Adam, C., & Georges, D. (2021). Multi-scale simulation of COVID-19 epidemics. ArXiv preprint arXiv:2112.01167, https://doi.org/10.48550/arXiv.2112.01167
- Gómez, J., Prieto, J., Leon, E., & Rodríguez, A. (2021). INFEKTA—An agent-based model for transmission of infectious diseases: The COVID-19 case in Bogotá, Colombia. PLoS ONE, 16(2), e024578. https://doi.org/10.1371/journal.pone.0245787
- Herrmann, JW., Liu, H., & Milton, D. (2024). Modeling the Spread of COVID-19 in University Communities, ArXiv preprint arXiv:2403.10402 , https://doi.org/10.48550/arXiv.2403.10402
- Hinch, R., Probert, WJM., Nurtay, A., Kendall, M., Wymant, C., Hall, M., Lythgoe, K., Bulas Cruz, A., Zhao, L., Stewart, A., Ferretti, L., Montero, D., Warren, J., Mather, N., Abueg, M., Wu, N., Legat, O., Bentley, K., Mead, T., Van-Vuuren, K., Feldner-Busztin, D., Ristori, T., Finkelstein, A., Bonsall, DG., Abeler-Dörner, L., Fraser, C. (2020). OpenABM-Covid19—An agent-based model for non-pharmaceutical interventions against COVID-19 including contact tracing. PLoS Computational Biology, 17(7), e1009146. https://doi.org/10.1371/journal.pcbi.1009146
- Horváth, G., Szederkényi, G., & Reguly, I. Z. (2023). Quantifying and comparing the impact of combinations of non-pharmaceutical interventions on the spread of COVID-19. In: 2023 31st Mediterranean Conference on Control and Automation (MED) Limassol, Cyprus, 1010-1015, o. https://doi.org/10.1109/MED59994.2023.10185817
- Kerkmann, D., Korf, S., Nguyen, K., Abele, D., Schengen, A., Gerstein, C., Göbbert, J.H., Basermann, A., Kühn, M.J. and Meyer-Hermann, M., (2024). Agent-based modeling for realistic reproduction of human mobility and contact behavior to evaluate test and isolation strategies in epidemic infectious disease spread. Computers in Biology and Medicine, 193, 110269, https://doi.org/10.1016/j.compbiomed.2025.110269.
- Kerr, CC., Stuart, RM., Mistry, D., Abeysuriya, RG., Rosenfeld, K., Hart, GR., Núñez, RC., Cohen, JA., Selvaraj, P., Hagedorn, B., George, L., Jastrzębski, M., Izzo, AS., Fowler, G., Palmer, A., Delport, D., Scott, N., Kelly, SL., Bennette, CS., Wagner, BG., Chang, ST., Oron, AP., Wenger, EA., Panovska-Griffiths, J., Famulare, M., Klein, DJ. (2020). Covasim: An agent-based model of COVID-19 dynamics and interventions. PLoS Computational Biology, 17(7), e1009149. https://doi.org/10.1371/journal.pcbi.1009149
- Keyes, K. M., Tracy, M., Mooney, S. J., Shev, A., & Cerdá, M. (2017). Invited commentary: agent-based models—bias in the face of discovery. American Journal of Epidemiology, 186(2), 146-148. o. https://doi.org/10.1093/aje/kwx090
- Kirillin, M., Khilov, A., Perekatova, V., Sergeeva, E., Kurakina, D., Fiks, I., Saperkin, N., Tang, M., Zou, Y., Macau, E., Pelinovsky, E. (2023). Multicentral Agent-Based Model of Four Waves of COVID-19 Spreading in Nizhny Novgorod Region of Russian Federation. Journal of Biomedical Photonics & Engineering, 9(1), 010306, https://doi.org/10.18287/jbpe23.09.010306
- Klôh, V., Silva, G., Ferro, M., Araújo, E., Melo, C., Lima, J., & Martins, E. (2020). The virus and socioeconomic inequality: An agent-based model to simulate and assess the impact of interventions to reduce the spread of COVID-19 in Rio de Janeiro, Brazil. Brazilian Journal of Health Review, 3(2), 3647-3673. o. https://doi.org/10.34119/bjhrv3n2-192
- Lopes, PH., Wellacott, L., de Almeida, L., Villavicencio, LMM., Moreira, ALL., Andrade, DS., Souza, AMC., de Sousa, RKR., Silva, PS., Lima, L., Lones, M., do Nascimento, JD. Jr., Vargas, PA., Moioli, RC., Blanco Figuerola, W., Rennó-Costa, C. (2022). Measuring the impact of nonpharmaceutical interventions on the SARS-CoV-2 pandemic at a city level: An agent-based computational modelling study of the City of Natal. PLOS Global Public Health 2(10): e0000540. https://doi.org/10.1371/journal.pgph.0000540
- Maziarz, M., & Zach, M. (2020). Agent-based modeling for SARS-CoV-2 epidemic prediction and intervention assessment. A methodological appraisal. Journal of Evaluation in Clinical Practice, 26(5), 1352-1360. o. https://doi.org/10.22541/au.159069201.16257121
- Nagori, A., Awasthi, R., Joshi, V., Vyalla, S., Jarodia, A., Gupta, C., Gulati, A., Bandhey, H., Kumaraguru, P., & Sethi, T. (2020). Less Wrong COVID-19 Projections With Interactive Assumptions. medRxiv 2020.06.06.20124495; https://doi.org/10.1101/2020.06.06.20124495
- Narassima, MS., Guru, RJ., Rashmi, P., Lincoln, C., Aadharsh, R., Vijay, Y., Anbuudayasankar, SP., Rangasami, P., Denny, J. (2020). An Agent Based Model for assessing spread and health systems burden for COVID-19 in Rangareddy district, Telangana state, India. medRxiv 2020.06.04.20121848, https://doi.org/10.1101/2020.06.04.20121848
- Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7(4), 308-313. o. https://doi.org/10.1093/comjnl/7.4.308
- Péni, T., Csutak, B., Szederkényi, G., & Röst, G. (2020). Nonlinear model predictive control with logic constraints for COVID-19 management. Nonlinear Dynamics, 102, 1965-1986. o. https://doi.org/10.1007/s11071-020-05980-1
- Polcz, P., Csutak, B., & Szederkényi, G. (2022). Reconstruction of epidemiological data in Hungary using stochastic model predictive control. Applied Sciences, 12(3), 1113. https://doi.org/10.3390/app12031113
- Polcz, P., Tornai, K., Juhász, J., Cserey, G., Surján, G., Pándics, T., Róka, E., Vargha, M., Reguly, IZ., Csikász-Nagy, A., Pongor, S., Szederkényi, G. (2023). Wastewater-based modeling, reconstruction, and prediction for COVID-19 outbreaks in Hungary caused by highly immune evasive variants. Water Research, 241, 120098. https://doi.org/10.1016/j.watres.2023.120098
- Rahaman, H., & Barik, D. (2023). Investigation of airborne spread of COVID-19 using a hybrid agent-based model: a case study of the UK. Royal Society Open Science, 10(7), 230377. https://doi.org/10.1098/rsos.230377
- Reguly IZ., Csercsik D., Juhász J., Tornai K., Bujtár Z., Horváth G., Keömley-Horváth B., Kós T., Cserey G., Iván K., Pongor S., Szederkényi G., Röst G., Csikász-Nagy A. (2021). Microsimulation based quantitative analysis of COVID-19 management strategies. PLoS Computational Biology, 18(1), e1009693. https://doi.org/10.1371/journal.pcbi.1009693
- Vermeulen, B., Mueller, M., & Pyka, A. (2021). Social Network Metric-Based Interventions? Experiments with an Agent-Based Model of the COVID-19 Pandemic in a Metropolitan Region. Journal of Artificial Societies and Social Simulation, 24(3), 6. https://doi.org/10.18564/jasss.4571
- Vidnerová, P., Neruda, R., Suchopárová, G., Berec, L., Diviák, T., Kuběna, A., Levínský, R., Šlerka, J., Šmíd, M., Trnka, J., Tuček, V., Vrbenský, K., Zajíček, M.. (2021). Simulation of Non-pharmaceutical Interventions in an Agent based Epidemic Model. In: Brona Brejová, Lucie Ciencialová, Martin Holena, Frantisek Mráz, Dana Pardubská, Martin Plátek, Tomás Vinar (eds): Proceedings of the 21st Conference Information Technologies - Applications and Theory (ITAT 2021), 263-268. o.