Vol. 16 No. 1 (2025)
Studies

The Importance of Agent-Based Models in the Management of the Coronavirus Epidemic

István Zoltán Reguly
Pázmány Péter Catholic University

Published 25-06-2025

Keywords

  • epidemic,
  • interventional planning,
  • agent-based models

Abstract

The SARS-CoV-2 pandemic underscored the vital need for adaptable and precise epidemic modelling tools. While traditional compartmental models were of crucial importance at the beginning of the epidemic, their limitations soon became apparent. Agent-based models have several advantages: they have much more fine-grained spatial and temporal resolution, and they can model the behaviours of individuals more accurately, therefore they can represent the complex dynamics of society better. In this study, we give an overview of the advantages of agent-based models, as well as our experiences deploying them, with a particular focus on age-stratified interventions, lockdowns, and other non-pharmaceutical interventions not easily modeled with compartmental models. We highlight the importance of calibrating to and validating with real-world data, and the challenges involved. Finally, we present the work and experiences of the epidemic modelling group at the university.

References

  1. Alvarez, L., Rojas-Galeano, S. (2020). Simulation of Non-Pharmaceutical Interventions on COVID-19 with an Agent-based Model of Zonal Restraint. medRxiv, 2020.06.13.20130542; https://doi.org/10.1101/2020.06.13.20130542
  2. Bobashev, G., Goedecke, D., Yu, F., & Epstein, J. (2007). A Hybrid Epidemic Model: Combining The Advantages Of Agent-Based And Equation-Based Approaches. In: 2007 Winter Simulation Conference, 1532-1537. o. https://doi.org/10.1109/WSC.2007.4419767
  3. Buhat, C., Lutero, D., Olave, Y., Torres, M., & Rabajante, J. (2020). Transmission of Respiratory Infectious Diseases between Neighboring Cities using Agent-based Model and Compartmental Model. medRxiv 2020.06.24.20138818; https://doi.org/10.1101/2020.06.24.20138818
  4. Csutak, B., Polcz, P., & Szederkényi, G. (2021). Computation of COVID-19 epidemiological data in Hungary using dynamic model inversion. In: 2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, 91-96, o. https://doi.org/10.1109/SACI51354.2021.9465563
  5. Doussin, B., Adam, C., & Georges, D. (2021). Multi-scale simulation of COVID-19 epidemics. ArXiv preprint arXiv:2112.01167, https://doi.org/10.48550/arXiv.2112.01167
  6. Gómez, J., Prieto, J., Leon, E., & Rodríguez, A. (2021). INFEKTA—An agent-based model for transmission of infectious diseases: The COVID-19 case in Bogotá, Colombia. PLoS ONE, 16(2), e024578. https://doi.org/10.1371/journal.pone.0245787
  7. Herrmann, JW., Liu, H., & Milton, D. (2024). Modeling the Spread of COVID-19 in University Communities, ArXiv preprint arXiv:2403.10402 , https://doi.org/10.48550/arXiv.2403.10402
  8. Hinch, R., Probert, WJM., Nurtay, A., Kendall, M., Wymant, C., Hall, M., Lythgoe, K., Bulas Cruz, A., Zhao, L., Stewart, A., Ferretti, L., Montero, D., Warren, J., Mather, N., Abueg, M., Wu, N., Legat, O., Bentley, K., Mead, T., Van-Vuuren, K., Feldner-Busztin, D., Ristori, T., Finkelstein, A., Bonsall, DG., Abeler-Dörner, L., Fraser, C. (2020). OpenABM-Covid19—An agent-based model for non-pharmaceutical interventions against COVID-19 including contact tracing. PLoS Computational Biology, 17(7), e1009146. https://doi.org/10.1371/journal.pcbi.1009146
  9. Horváth, G., Szederkényi, G., & Reguly, I. Z. (2023). Quantifying and comparing the impact of combinations of non-pharmaceutical interventions on the spread of COVID-19. In: 2023 31st Mediterranean Conference on Control and Automation (MED) Limassol, Cyprus, 1010-1015, o. https://doi.org/10.1109/MED59994.2023.10185817
  10. Kerkmann, D., Korf, S., Nguyen, K., Abele, D., Schengen, A., Gerstein, C., Göbbert, J.H., Basermann, A., Kühn, M.J. and Meyer-Hermann, M., (2024). Agent-based modeling for realistic reproduction of human mobility and contact behavior to evaluate test and isolation strategies in epidemic infectious disease spread. Computers in Biology and Medicine, 193, 110269, https://doi.org/10.1016/j.compbiomed.2025.110269.
  11. Kerr, CC., Stuart, RM., Mistry, D., Abeysuriya, RG., Rosenfeld, K., Hart, GR., Núñez, RC., Cohen, JA., Selvaraj, P., Hagedorn, B., George, L., Jastrzębski, M., Izzo, AS., Fowler, G., Palmer, A., Delport, D., Scott, N., Kelly, SL., Bennette, CS., Wagner, BG., Chang, ST., Oron, AP., Wenger, EA., Panovska-Griffiths, J., Famulare, M., Klein, DJ. (2020). Covasim: An agent-based model of COVID-19 dynamics and interventions. PLoS Computational Biology, 17(7), e1009149. https://doi.org/10.1371/journal.pcbi.1009149
  12. Keyes, K. M., Tracy, M., Mooney, S. J., Shev, A., & Cerdá, M. (2017). Invited commentary: agent-based models—bias in the face of discovery. American Journal of Epidemiology, 186(2), 146-148. o. https://doi.org/10.1093/aje/kwx090
  13. Kirillin, M., Khilov, A., Perekatova, V., Sergeeva, E., Kurakina, D., Fiks, I., Saperkin, N., Tang, M., Zou, Y., Macau, E., Pelinovsky, E. (2023). Multicentral Agent-Based Model of Four Waves of COVID-19 Spreading in Nizhny Novgorod Region of Russian Federation. Journal of Biomedical Photonics & Engineering, 9(1), 010306, https://doi.org/10.18287/jbpe23.09.010306
  14. Klôh, V., Silva, G., Ferro, M., Araújo, E., Melo, C., Lima, J., & Martins, E. (2020). The virus and socioeconomic inequality: An agent-based model to simulate and assess the impact of interventions to reduce the spread of COVID-19 in Rio de Janeiro, Brazil. Brazilian Journal of Health Review, 3(2), 3647-3673. o. https://doi.org/10.34119/bjhrv3n2-192
  15. Lopes, PH., Wellacott, L., de Almeida, L., Villavicencio, LMM., Moreira, ALL., Andrade, DS., Souza, AMC., de Sousa, RKR., Silva, PS., Lima, L., Lones, M., do Nascimento, JD. Jr., Vargas, PA., Moioli, RC., Blanco Figuerola, W., Rennó-Costa, C. (2022). Measuring the impact of nonpharmaceutical interventions on the SARS-CoV-2 pandemic at a city level: An agent-based computational modelling study of the City of Natal. PLOS Global Public Health 2(10): e0000540. https://doi.org/10.1371/journal.pgph.0000540
  16. Maziarz, M., & Zach, M. (2020). Agent-based modeling for SARS-CoV-2 epidemic prediction and intervention assessment. A methodological appraisal. Journal of Evaluation in Clinical Practice, 26(5), 1352-1360. o. https://doi.org/10.22541/au.159069201.16257121
  17. Nagori, A., Awasthi, R., Joshi, V., Vyalla, S., Jarodia, A., Gupta, C., Gulati, A., Bandhey, H., Kumaraguru, P., & Sethi, T. (2020). Less Wrong COVID-19 Projections With Interactive Assumptions. medRxiv 2020.06.06.20124495; https://doi.org/10.1101/2020.06.06.20124495
  18. Narassima, MS., Guru, RJ., Rashmi, P., Lincoln, C., Aadharsh, R., Vijay, Y., Anbuudayasankar, SP., Rangasami, P., Denny, J. (2020). An Agent Based Model for assessing spread and health systems burden for COVID-19 in Rangareddy district, Telangana state, India. medRxiv 2020.06.04.20121848, https://doi.org/10.1101/2020.06.04.20121848
  19. Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7(4), 308-313. o. https://doi.org/10.1093/comjnl/7.4.308
  20. Péni, T., Csutak, B., Szederkényi, G., & Röst, G. (2020). Nonlinear model predictive control with logic constraints for COVID-19 management. Nonlinear Dynamics, 102, 1965-1986. o. https://doi.org/10.1007/s11071-020-05980-1
  21. Polcz, P., Csutak, B., & Szederkényi, G. (2022). Reconstruction of epidemiological data in Hungary using stochastic model predictive control. Applied Sciences, 12(3), 1113. https://doi.org/10.3390/app12031113
  22. Polcz, P., Tornai, K., Juhász, J., Cserey, G., Surján, G., Pándics, T., Róka, E., Vargha, M., Reguly, IZ., Csikász-Nagy, A., Pongor, S., Szederkényi, G. (2023). Wastewater-based modeling, reconstruction, and prediction for COVID-19 outbreaks in Hungary caused by highly immune evasive variants. Water Research, 241, 120098. https://doi.org/10.1016/j.watres.2023.120098
  23. Rahaman, H., & Barik, D. (2023). Investigation of airborne spread of COVID-19 using a hybrid agent-based model: a case study of the UK. Royal Society Open Science, 10(7), 230377. https://doi.org/10.1098/rsos.230377
  24. Reguly IZ., Csercsik D., Juhász J., Tornai K., Bujtár Z., Horváth G., Keömley-Horváth B., Kós T., Cserey G., Iván K., Pongor S., Szederkényi G., Röst G., Csikász-Nagy A. (2021). Microsimulation based quantitative analysis of COVID-19 management strategies. PLoS Computational Biology, 18(1), e1009693. https://doi.org/10.1371/journal.pcbi.1009693
  25. Vermeulen, B., Mueller, M., & Pyka, A. (2021). Social Network Metric-Based Interventions? Experiments with an Agent-Based Model of the COVID-19 Pandemic in a Metropolitan Region. Journal of Artificial Societies and Social Simulation, 24(3), 6. https://doi.org/10.18564/jasss.4571
  26. Vidnerová, P., Neruda, R., Suchopárová, G., Berec, L., Diviák, T., Kuběna, A., Levínský, R., Šlerka, J., Šmíd, M., Trnka, J., Tuček, V., Vrbenský, K., Zajíček, M.. (2021). Simulation of Non-pharmaceutical Interventions in an Agent based Epidemic Model. In: Brona Brejová, Lucie Ciencialová, Martin Holena, Frantisek Mráz, Dana Pardubská, Martin Plátek, Tomás Vinar (eds): Proceedings of the 21st Conference Information Technologies - Applications and Theory (ITAT 2021), 263-268. o.