Published 25-06-2025
Keywords
- epidemic,
- interventional planning,
- agent-based models
Copyright (c) 2025 István Reguly

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
The SARS-CoV-2 pandemic underscored the vital need for adaptable and precise epidemic modelling tools. While traditional compartmental models were of crucial importance at the beginning of the epidemic, their limitations soon became apparent. Agent-based models have several advantages: they have much more fine-grained spatial and temporal resolution, and they can model the behaviours of individuals more accurately, therefore they can represent the complex dynamics of society better. In this study, we give an overview of the advantages of agent-based models, as well as our experiences deploying them, with a particular focus on age-stratified interventions, lockdowns, and other non-pharmaceutical interventions not easily modeled with compartmental models. We highlight the importance of calibrating to and validating with real-world data, and the challenges involved. Finally, we present the work and experiences of the epidemic modelling group at the university.
References
- Alvarez, L., Rojas-Galeano, S. (2020). Simulation of Non-Pharmaceutical Interventions on COVID-19 with an Agent-based Model of Zonal Restraint. medRxiv, 2020.06.13.20130542; https://doi.org/10.1101/2020.06.13.20130542
- Bobashev, G., Goedecke, D., Yu, F., & Epstein, J. (2007). A Hybrid Epidemic Model: Combining The Advantages Of Agent-Based And Equation-Based Approaches. In: 2007 Winter Simulation Conference, 1532-1537. o. https://doi.org/10.1109/WSC.2007.4419767
- Buhat, C., Lutero, D., Olave, Y., Torres, M., & Rabajante, J. (2020). Transmission of Respiratory Infectious Diseases between Neighboring Cities using Agent-based Model and Compartmental Model. medRxiv 2020.06.24.20138818; https://doi.org/10.1101/2020.06.24.20138818
- Csutak, B., Polcz, P., & Szederkényi, G. (2021). Computation of COVID-19 epidemiological data in Hungary using dynamic model inversion. In: 2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, 91-96, o. https://doi.org/10.1109/SACI51354.2021.9465563
- Doussin, B., Adam, C., & Georges, D. (2021). Multi-scale simulation of COVID-19 epidemics. ArXiv preprint arXiv:2112.01167, https://doi.org/10.48550/arXiv.2112.01167
- Gómez, J., Prieto, J., Leon, E., & Rodríguez, A. (2021). INFEKTA—An agent-based model for transmission of infectious diseases: The COVID-19 case in Bogotá, Colombia. PLoS ONE, 16(2), e024578. https://doi.org/10.1371/journal.pone.0245787
- Herrmann, JW., Liu, H., & Milton, D. (2024). Modeling the Spread of COVID-19 in University Communities, ArXiv preprint arXiv:2403.10402 , https://doi.org/10.48550/arXiv.2403.10402
- Hinch, R., Probert, WJM., Nurtay, A., Kendall, M., Wymant, C., Hall, M., Lythgoe, K., Bulas Cruz, A., Zhao, L., Stewart, A., Ferretti, L., Montero, D., Warren, J., Mather, N., Abueg, M., Wu, N., Legat, O., Bentley, K., Mead, T., Van-Vuuren, K., Feldner-Busztin, D., Ristori, T., Finkelstein, A., Bonsall, DG., Abeler-Dörner, L., Fraser, C. (2020). OpenABM-Covid19—An agent-based model for non-pharmaceutical interventions against COVID-19 including contact tracing. PLoS Computational Biology, 17(7), e1009146. https://doi.org/10.1371/journal.pcbi.1009146
- Horváth, G., Szederkényi, G., & Reguly, I. Z. (2023). Quantifying and comparing the impact of combinations of non-pharmaceutical interventions on the spread of COVID-19. In: 2023 31st Mediterranean Conference on Control and Automation (MED) Limassol, Cyprus, 1010-1015, o. https://doi.org/10.1109/MED59994.2023.10185817
- Kerkmann, D., Korf, S., Nguyen, K., Abele, D., Schengen, A., Gerstein, C., Göbbert, J.H., Basermann, A., Kühn, M.J. and Meyer-Hermann, M., (2024). Agent-based modeling for realistic reproduction of human mobility and contact behavior to evaluate test and isolation strategies in epidemic infectious disease spread. Computers in Biology and Medicine, 193, 110269, https://doi.org/10.1016/j.compbiomed.2025.110269.
- Kerr, CC., Stuart, RM., Mistry, D., Abeysuriya, RG., Rosenfeld, K., Hart, GR., Núñez, RC., Cohen, JA., Selvaraj, P., Hagedorn, B., George, L., Jastrzębski, M., Izzo, AS., Fowler, G., Palmer, A., Delport, D., Scott, N., Kelly, SL., Bennette, CS., Wagner, BG., Chang, ST., Oron, AP., Wenger, EA., Panovska-Griffiths, J., Famulare, M., Klein, DJ. (2020). Covasim: An agent-based model of COVID-19 dynamics and interventions. PLoS Computational Biology, 17(7), e1009149. https://doi.org/10.1371/journal.pcbi.1009149
- Keyes, K. M., Tracy, M., Mooney, S. J., Shev, A., & Cerdá, M. (2017). Invited commentary: agent-based models—bias in the face of discovery. American Journal of Epidemiology, 186(2), 146-148. o. https://doi.org/10.1093/aje/kwx090
- Kirillin, M., Khilov, A., Perekatova, V., Sergeeva, E., Kurakina, D., Fiks, I., Saperkin, N., Tang, M., Zou, Y., Macau, E., Pelinovsky, E. (2023). Multicentral Agent-Based Model of Four Waves of COVID-19 Spreading in Nizhny Novgorod Region of Russian Federation. Journal of Biomedical Photonics & Engineering, 9(1), 010306, https://doi.org/10.18287/jbpe23.09.010306
- Klôh, V., Silva, G., Ferro, M., Araújo, E., Melo, C., Lima, J., & Martins, E. (2020). The virus and socioeconomic inequality: An agent-based model to simulate and assess the impact of interventions to reduce the spread of COVID-19 in Rio de Janeiro, Brazil. Brazilian Journal of Health Review, 3(2), 3647-3673. o. https://doi.org/10.34119/bjhrv3n2-192
- Lopes, PH., Wellacott, L., de Almeida, L., Villavicencio, LMM., Moreira, ALL., Andrade, DS., Souza, AMC., de Sousa, RKR., Silva, PS., Lima, L., Lones, M., do Nascimento, JD. Jr., Vargas, PA., Moioli, RC., Blanco Figuerola, W., Rennó-Costa, C. (2022). Measuring the impact of nonpharmaceutical interventions on the SARS-CoV-2 pandemic at a city level: An agent-based computational modelling study of the City of Natal. PLOS Global Public Health 2(10): e0000540. https://doi.org/10.1371/journal.pgph.0000540
- Maziarz, M., & Zach, M. (2020). Agent-based modeling for SARS-CoV-2 epidemic prediction and intervention assessment. A methodological appraisal. Journal of Evaluation in Clinical Practice, 26(5), 1352-1360. o. https://doi.org/10.22541/au.159069201.16257121
- Nagori, A., Awasthi, R., Joshi, V., Vyalla, S., Jarodia, A., Gupta, C., Gulati, A., Bandhey, H., Kumaraguru, P., & Sethi, T. (2020). Less Wrong COVID-19 Projections With Interactive Assumptions. medRxiv 2020.06.06.20124495; https://doi.org/10.1101/2020.06.06.20124495
- Narassima, MS., Guru, RJ., Rashmi, P., Lincoln, C., Aadharsh, R., Vijay, Y., Anbuudayasankar, SP., Rangasami, P., Denny, J. (2020). An Agent Based Model for assessing spread and health systems burden for COVID-19 in Rangareddy district, Telangana state, India. medRxiv 2020.06.04.20121848, https://doi.org/10.1101/2020.06.04.20121848
- Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7(4), 308-313. o. https://doi.org/10.1093/comjnl/7.4.308
- Péni, T., Csutak, B., Szederkényi, G., & Röst, G. (2020). Nonlinear model predictive control with logic constraints for COVID-19 management. Nonlinear Dynamics, 102, 1965-1986. o. https://doi.org/10.1007/s11071-020-05980-1
- Polcz, P., Csutak, B., & Szederkényi, G. (2022). Reconstruction of epidemiological data in Hungary using stochastic model predictive control. Applied Sciences, 12(3), 1113. https://doi.org/10.3390/app12031113
- Polcz, P., Tornai, K., Juhász, J., Cserey, G., Surján, G., Pándics, T., Róka, E., Vargha, M., Reguly, IZ., Csikász-Nagy, A., Pongor, S., Szederkényi, G. (2023). Wastewater-based modeling, reconstruction, and prediction for COVID-19 outbreaks in Hungary caused by highly immune evasive variants. Water Research, 241, 120098. https://doi.org/10.1016/j.watres.2023.120098
- Rahaman, H., & Barik, D. (2023). Investigation of airborne spread of COVID-19 using a hybrid agent-based model: a case study of the UK. Royal Society Open Science, 10(7), 230377. https://doi.org/10.1098/rsos.230377
- Reguly IZ., Csercsik D., Juhász J., Tornai K., Bujtár Z., Horváth G., Keömley-Horváth B., Kós T., Cserey G., Iván K., Pongor S., Szederkényi G., Röst G., Csikász-Nagy A. (2021). Microsimulation based quantitative analysis of COVID-19 management strategies. PLoS Computational Biology, 18(1), e1009693. https://doi.org/10.1371/journal.pcbi.1009693
- Vermeulen, B., Mueller, M., & Pyka, A. (2021). Social Network Metric-Based Interventions? Experiments with an Agent-Based Model of the COVID-19 Pandemic in a Metropolitan Region. Journal of Artificial Societies and Social Simulation, 24(3), 6. https://doi.org/10.18564/jasss.4571
- Vidnerová, P., Neruda, R., Suchopárová, G., Berec, L., Diviák, T., Kuběna, A., Levínský, R., Šlerka, J., Šmíd, M., Trnka, J., Tuček, V., Vrbenský, K., Zajíček, M.. (2021). Simulation of Non-pharmaceutical Interventions in an Agent based Epidemic Model. In: Brona Brejová, Lucie Ciencialová, Martin Holena, Frantisek Mráz, Dana Pardubská, Martin Plátek, Tomás Vinar (eds): Proceedings of the 21st Conference Information Technologies - Applications and Theory (ITAT 2021), 263-268. o.