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Abstract
This paper attempts to provide an account of the reference of formal systems. I 
assume (on grounds that I cannot lay out fully) that formal systems can be considered 
to be referential, that is, capable of formulating truths in the correspondence sense, 
on two conditions: 1. that they are consistent and 2. that they contain true but 
unprovable formulas. The first of these conditions is self-evident; the second, by 
contrast, cannot be assumed without begging the question, without presupposing 
truth before accounting for its possibility. I argue, however, that Kurt Gödel’s proof 
of the inevitability of undecidable formulas in any formal system provides a ground 
for assuming the existence of true but unprovable sentences without presupposing 
objective truth. For this, however, we need to develop a different sense of ‘true’ from 
what is usually assigned to the undecidable formula. Using insights from Jacques 
Derrida, I argue that we can legitimately conceptualize the truth of the undecidable 
formula as referring not to some objective reality but to the formal system itself.
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1. Introduction: Derrida and Gödel

U
nlike many of his contemporaries, Derrida rarely speaks about formal 
logic or mathematics. Several French philosophers of his generation 
– such as Lacan, Deleuze or Kristeva – are apparently attracted to 
mathematical analogies, and Badiou bases his whole theory of the 

subject, of the event, and of truth procedures on formal logical considerations. In 
spite of his conspicuous silence about logic and mathematics, however, Derrida 
makes a remarkable reference to Gödel’s undecidable sentences when introducing 
his own notion of undecidability (Derrida 1981b, 230). This, as Christopher Norris 
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remarks, is a telling invocation of Gödel’s incompleteness theorem, since it occurs at a 
cardinal point, “notably in [Derrida’s] treatment of Mallarmé’s paradoxical reflections 
on language, logic, reference and truth” (Norris 2012, 34), that is, at a point where 
Derrida is engaging with the most foundational issues of deconstruction. Derrida’s 
allusion to Gödel might, therefore, indicate an analogy between the formal-logical, 
metamathematical Gödelian argument about undecidable formulas of arithmetic 
and the fundamental strategies of deconstruction. This analogy has been explored 
in some detail in literature that attempts to create a link between deconstruction 
and analytic philosophy, most notably by Graham Priest, Paul Livingston, and 
Christopher Norris (Priest 2002; Norris 2012; Livingston 2012). 

Although Priest does not compare Derrida to Gödel specifically, his comments 
on deconstruction can no doubt make such a comparison possible. In his 1994 
paper titled “Derrida and Self-Reference” he likens deconstruction’s emphasis on 
the inexpressibility and unnameability of its central terms (such as différance) to the 
early Wittgenstein’s thoughts on ineffability (Priest 1994), and in his 1995 book 
The Limits of Thought he presents the fundamental strategy of deconstruction – 
essentially on the basis of the same analysis – as an instance of what he terms 
the Inclosure Schema. The Inclosure Schema is a set of conditions that results in 
the production of a specific kind of contradiction wherein a term or a member of 
some totality is both inexpressible in terms of the theory organizing that totality 
(Transcendence) and is nevertheless expressed or conveyed by that theory (Closure). 
Priest discovers this schema and the resulting contradictions in the work of a great 
number of thinkers throughout the history of philosophy, including of course 
Gödel, whose undecidable formula he presents as an inclosure contradiction, since 
its undecidability both transcends the theory of provability in terms of which it is 
formulated and acquires its sole formulation in terms of this theory (Priest 2002, 144).2 

Similarly, he sees Derrida’s central (non-)concepts, différance, trace, supplementarity, 
pharmakon, parergon, etc. as manifesting the same kind of contradiction. These (non-)
concepts are inexpressible in terms of the context in which they emerge, since they 
transcend the founding opposition organizing that context, and yet, precisely by 
this inexpressibility, the context in which they appear still succeeds in conveying a 
sense of what is inexpressible. What is more, this inexpressible can only be revealed 
inside this context, albeit only as that which transcends it. It is by this means that the 
deconstructive procedures organized around these (non-)concepts satisfy the two 

2 For Priest’s in-depth discussion of Gödel’s formula see his (Priest 2006, 39–50).
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main conditions of Priest’s Inclosure Schema: Transcendence and Closure (Priest 
2002, 214–224).

Christopher Norris criticizes Priest’s interpretation of Derrida for not taking 
into account how persistently the latter insists on consistency and on a classical 
bivalent logic (Norris 2006, 50; Norris 2012, 138; 148–149). However, he also 
recognizes and puts special emphasis on the analogy between deconstructive 
procedures and Gödel’s incompleteness theorems. He points out that the aporetic 
outcome of “the various modes of deconstructive close-reading […] can best be 
understood by analogy with Gödel’s incompleteness or undecidability theorem” 
(Norris 2012, 11), and insists that Derrida’s invocation of Gödel’s theorem “is not 
just a vaguely analogical or downright opportunist appeal to the presumed authority 
of mathematics and logic but a reference-point that precisely captures the movement 
– the logico-syntactic-semantic procedure – of Derrida’s classic readings” (Norris 
2012, 28). In spite of these general claims, however, Norris does not actually describe 
this analogy in detail. He makes a strong case for the relevance and applicability of 
formal logical considerations to deconstruction and vice versa, but the connection 
between Gödelian and Derridean undecidability remains merely implicit.

We are given a much more explicit treatment of this connection in Paul 
Livingston’s book The Politics of Logic.3 Similarly to Norris, Livingston starts out 
from the observation that “several of Derrida’s key terms (for instance, trace, the 
‘undecidable,’ and différance) and the textual praxis they embody can indeed usefully be 
understood as figuring the metalogical consequences of a thoroughgoing reflection 
on the implications of formalism” (Livingston 2012, 113). He then analyses Derrida’s 
thoughts on mimesis (as expressed in his reading of Mallarmé in The Double Session) 
and on the term différance in close analogy with the status and function of Gödel’s 
undecidable formula in the context of formal systems. He concludes that we can 
discover three fundamental similarities between Derrida’s key terms and Gödel’s 
undecidable formula: 

First, both depend on a kind of “self-referential” encoding whereby a system’s 
total logic (the conditions for the possibility of its organizing distinctions) is 
formalized at a single point – the Gödel sentence or the “undecidable term” – 
which in turn makes it possible to inscribe an “undecidable.” Second, both suggest 
a generalization of this result to show that any system of sufficient complexity will 
allow the inscription of undecidables […] [And third, both Gödel and Derrida’s 

3 Cf. also his paper “Derrida and Formal Logic: fomalizing the undecidable” (Livingston 2010), which is the original of 
the chapter in The Politics of Logic.
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undecidable] always results from a semantical effect of syntax that cannot itself 
be excluded from any regular system of writing. (Livingston 2012, 121–122)

I will obviously not be able to represent the depth of Livingston’s comparison 
here.4 Suffice it to say that his detailed and carefully laid-out argument clearly 
establishes a deep connection between Gödel and Derrida’s strategies. In this paper 
I will explain my own interpretation of this connection. I will present in outline 
an argument from a book that I am still working on; an argument in which I will 
attempt to show that Derrida’s insightful treatment of undecidability can ground a 
new approach to the old problem of the reference of formal systems. This means 
that I will reverse the typical approach to the connection between Derrida and 
formal thought. Priest, Norris, and Livingston essentially use the analogy with 
formal logical considerations to provide a deeper understanding and justification of 
Derrida’s arguments. Although both Norris and Livingston point out that analytic 
philosophy has much to learn from deconstruction, neither makes the case that 
deconstruction can have any bearing on formal logic. My starting point, on the 
other hand, is precisely this. I will argue that the development of formal logic has 
posed philosophical questions which can perhaps be handled in novel ways by 
implementing some of Derrida’s insights. 

In his seminal essay, “Différance” Derrida contends that “différance lends itself 
to a certain number of nonsynonymous substitutions, according to the necessity of 
the context” (Derrida 1981a, 12), and I will argue that Gödel’s undecidable formula 
can be thought of as one such nonsynonymous substitution. The context in which 
this substitution occurs, moreover, is a particularly well-defined and lucid one: that 
of formal logical systems, which means that examining the status of Derridean 
undecidability in this precise context can also bring us closer to realizing Derrida’s 
ambition expressed in his “Afterword: Toward an Ethic of Discussion”: namely, 
to achieve “the strictest possible determination of the figures of play, of oscillation, of 
undecidability” (Derrida 1988, 145 (my italics)).

2. Formal Systems

Let us begin by familiarizing ourselves a little with the context: the precise and well-
defined context of formal systems. For a system to be called a formal system it must 
first be capable of translating any statement it concerns itself with to a formula in the 

4 For a more complete treatment see my (Barcsák 2017). The third of these similarities seems to me to be the most 
important one and I will rely on this in section 5 of this paper.
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notation of the system; that is, to a string of symbols which is then manipulated by 
the system in a totally mechanical5 way without regard to the meanings we originally 
attributed to the symbols. For in such a system, as Gödel puts it, “the meaning of the 
symbols is immaterial, and it is desirable that they be forgotten” (Gödel 1965, 153). 
This is precisely why such systems are called formal: the manipulations the strings 
of symbols undergo are governed by mechanical rules which affect the strings only 
on the basis of their form, totally disregarding their meanings. Typically, formal 
systems are built up by selecting a countable number of formulas, the axioms, and 
specifying the rules of manipulation in formal (or syntactic) terms.6

What counts as a formal system has been very clearly determined as a result of 
the 20th-century development of formal logic. It has been clarified, in particular, 
what we can consider to be an entirely mechanical system (that is, formal in the 
above sense).7 It turns out that there is a class of formal systems which are mutually 
translatable into each other and hence equivalent, which represent everything that 
we can be certain is fully mechanically, formally representable. There are simpler 
formal systems that express less than this class of systems, but such simpler systems 
are fully represented in the latter; and there are more complex systems which express 
more than this class of systems, but which are not fully mechanical/formal. This 
class of systems, therefore, comprises everything that we now know is mechanically 
controllable.8 In what follows, I will rely on one formalization of this kind of system, 
Douglas Hofstaedter’s Typographical Number Theory (TNT) (Hofstadter 1979).

Such systems can express a great deal. TNT, for example, was designed to 
capture everything that we know about natural numbers and their relations. It can 
thus formalize any statement about natural numbers: statements such as 7+2=9, or 

5 By “mechanical” I mean representable by a Turing-machine. In this sense, “mechanical” is synonymous with “effectively 
calculable” or with “reducible to a computable function of integers” (Gödel 1995, p. 304n1).
6 David Hilbert, the initiator and main advocate of formalism in mathematics, describes formal systems as follows:

We now divest the logical signs of all meaning, just as we did the mathematical ones, and declare that the formulas of 
the logical calculus do not mean anything in themselves… In this way we now finally obtain, in place of the contentual 
mathematical science that is communicated by means of ordinary language, an inventory of formulas that are formed 
from mathematical and logical signs and follow each other according to definite rules. Certain of these formulas 
correspond to the mathematical axioms, and to contentual inference there correspond the rules according to which the 
formulas follow each other; hence contentual inference is replaced by manipulation of signs according to rules, and in 
this way the full transition from a naïve to a formal treatment is now accomplished. (Hilbert 1967, 381)

7 A useful summary of the events that led to this realization – and in particular of the effects of Alan Turing’s paper 
(Turing 1936) – is provided by Juliette Kennedy (Kennedy 2014, 114–119).
8 It is important to emphasize that this is just what we know is mechanically controllable. We know that what can be 
captured in a Turing machine is mechanically controllable. On the other hand, the reverse claim – that is, that everything 
that is mechanically controllable is captured in a Turing-machine – cannot be proved. This is usually referred to as the 
Church-Turing thesis, and we know that – in addition to Alonso Church and Alan Turing – Gödel also believed that this 
thesis holds.
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3×5≠10, which are true, but also false statements such as 2×2=6. These statements 
will look as follows in TNT notation:

SSSSSSSO+SSO=SSSSSSSSSO
SSSO·SSSSSO≠SSSSSSSSSSO
SSO·SSO=SSSSSSO

These are very simple statements, but TNT can express much more complex 
assertions about numbers, too: for example, it can formalize statements such as 
“there are infinitely many prime numbers,” or “the expression xn+yn=zn has no 
integer solutions for n>2,” or “every even number that can be expressed as the 
sum of two primes.” The first of these is translated into TNT notation in this 
way: ∀d: ∃e: ~∃b: ∃c: (d + Se) = (SSb ∙ SSc),9 and for the other two a similar 
TNT translation is also possible. In fact, TNT is complex and expressive enough to 
formalize potentially any statement about natural numbers. 

What is more, it can even produce a complete list of all the meaningful 
arithmetical statements by means of formalization. It can rule out in a completely 
mechanical way all meaningless statements, such as for example × 12 + −6 = 66. 
A statement like this obviously does not make sense because it is not well formed 
(it just does not use the symbols in the right way), and TNT can always determine 
by a mechanical procedure whether or not any statement expressed in its notation 
is well-formed. As a result, we can select only the well-formed formulas (wff) of 
the system. Moreover, we could even organize these into a list, for example, on the 
basis of the length of the formulas, starting with the shortest and moving towards 
increasingly longer ones. Among formulas of equal length, we could create order 
by some alphabetization, and in this way, in theory, we could compile the complete 
list of well-formed formulas. This list would of course be an infinite one, but it is 
countably infinite, which means that we can even number the formulas, assigning 
a unique natural number (of which there are likewise an infinite number) to each 
item on the list.

Another important property of formal systems is that not only are they capable 
of producing a complete list of all the well-formed formulas, but they can also 
enumerate all the theorems of the system; that is, all the formulas that can be derived 
from the axioms by the mechanical application of the rules of procedure. In other 

9 Where b, c, e and d are integer variables, ∀ and ∃ are the usual universal and existential quantifiers (“for all” and “there 
exists”, respectively), ~ is the negation operator, and S represents the successor function (“successor of”).
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words, formal systems are also capable of generating a complete list of the formulas 
that they can prove (that is, formally derive from the axioms).

What formal systems can provide is thus two lists: one containing all the possible 
well-formed formulas (that is, all the meaningful statements) about numbers, 
and the other comprising all the provable formulas. With the help of our formal 
system, therefore, we can potentially reduce the question of arithmetical truth to 
a mechanically controllable procedure. We take a random formula from the list of 
well-formed formulas – say “2×2=6” or “the expression xn+yn=zn has no integer 
solutions for n>2” – and ask, “Is this on the list of theorems?” If it is, then it is true, 
and if not, then it is false. To ascertain that an arbitrary well-formed formula is on 
the list of theorems we must demonstrate that the given formula can be gained by 
the mechanical manipulation (that is, a purely formal, syntactic handling) of the 
formulas representing the axioms. This is what is called a proof. Sometimes it is 
easy to prove whether a well-formed formula is on the list of theorems. In just a few 
steps, for example, we could prove that the formula representing “2×2=6” is not on 
the list; at other times the proof is rather more complicated. It took more than three 
and a half centuries to prove that Fermat’s last theorem (“the expression xn+yn=zn 
has no integer solutions for n>2”) is on the list, and the demonstration is more than 
120 pages long (Andrew Wiles proved it in 1994–95) (Wiles 1995). We still do not 
know whether the statement “every even number can be expressed as the sum of 
two primes” is on the list – it probably is, because this is Goldbach’s conjecture, 
which is in all likelihood true, but ever since the conjecture was first formulated 
in 1742, no one has succeeded in demonstrating it. In principle, however, we could 
expect that such a demonstration may eventually be carried out and that thus the 
truth of arithmetical propositions can always be determined entirely mechanically.

3. Reference and Truth

Once we establish this, however, the question arises: “In what sense could the 
theorems of a formal system like this be said to be ‘true’?” What we mean by “true” 
is generally the so-called correspondence conception of truth; that is, the view under 
which – to use Alfred Tarski’s phrase – “[t]he truth of a sentence consists in its 
agreement with (or correspondence to) reality” (Tarski 1944, 343) or, to use another 
formulation by the same author, “[a] sentence is true if it designates an existing 
state of affairs” (Tarski 1944, 343). But if the system producing the theorems is 
fully mechanical, then how can we know that the formulas mechanically produced 
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actually correspond to states of affairs in an objective reality? If the system is purely 
mechanical, then there is a chance that everything it produces is mere tautology and 
that all that its operations amount to is merely, as Gödel puts it, “an idle running of 
language” (Gödel 1995, 319).10

This is the question of the reference of formal systems – it is a vast topic in the 
philosophy of mathematics and I will not be able to go into the details here. Suffice 
it to say that in my book I come to the conclusion that for a totally mechanically 
conceived, purely formally or syntactically specified system we must minimally 
presuppose two things to be able to maintain that the system is referential, that is, 
that it can sustain the correspondence conception of truth: we must presuppose (1) 
that the system is consistent, and (2) that it contains true but unprovable sentences 
– that is, well-formed formulas that represent truths, though we cannot derive them 
as theorems.11

The first of these conditions is relatively easy to justify. By the laws of classical 
logic,12 out of a formal contradiction everything follows (ex contradictione quodlibet 
sequitur – ECQ). This means that if our system were inconsistent – that is, if it could 
prove a contradiction – then it would prove every formula. If every formula were 
true, then truth obviously could not be used in the correspondence sense; it just 
would not make sense to maintain that every state of affairs exists at the same time. 
It is therefore clear that the formal consistency of the system is an indispensable 
precondition for formulating any notion of truth in the correspondence sense.

Unlike this first condition, however, the second – that is, that the system should 
contain true but unprovable sentences – is thoroughly problematic. For starters, 
as Tarski proved, the concept of truth cannot be formulated inside a given formal 
system.13 Consequently, and secondly, if we assume true but unprovable sentences, 
we beg the question, that is, we assume that we know what truth is before we could 

10 This situation is closely analogous to the philosophical problem usually referred to as the “paradox of analysis.” This 
paradox was first pointed out by G. E. Moore and received its classic formulation from C. H. Langford, which runs thus:

Let us call what is to be analyzed the analysandum, and let us call that which does the analysing the analysans. The 
analysis then states an appropriate relation of equivalence between the analysandum and the analysans. And the paradox 
of analysis is to the effect that, if the verbal expression representing the analysandum has the same meaning as the verbal 
expression representing the analysans, the analysis states a bare identity and is trivial; but if the two verbal expressions 
do not have the same meaning, the analysis is incorrect. (Langford 1968, 323) Cf. also (Norris 2012, 141).

11 The first of these requirements is intuitively obvious. The second can be formulated in several different ways. That 
all these different ways can be summarized and succinctly stated in this one requirement of the presence of true but 
unprovable sentences is something that I arrived at as a result of an analysis of Tarski’s invocation of the principle of the 
excluded middle in his (Tarski 1983).
12 By “classical logic” I simply mean the standard logic of mathematical practice (by and large the propositional and 
predicate calculuses), as distinct from, for example, intuitionistic logic or paraconsistent logics.
13 This is what is usually referred to as “Tarski’s Theorem” and he first presented it in the “Postscript” to his (Tarski 1983, 268–277).
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ground this concept. Thirdly, and for us most importantly, this would involve a 
naïve presupposition of the independent, objective existence of reality: for us to 
know that the true but unprovable sentence is true, we would need to assume that 
we have access to the state of affairs the sentence refers to before formulating this 
knowledge in the sentence itself. 

The first two of these consequences seem to me to be inevitable: since the 
concept of truth cannot be expressed in a consistent formal system, any account of 
reference will to some extent beg the question. For any such account we will need to 
assume an external point of view, we will have to presuppose at least the possibility 
of reference. But does this mean that we likewise need a naïve presupposition 
of objective existence? Not necessarily. One of the central claims of my book is 
precisely this: that we can ground reference for formal systems without presupposing 
an objective reality. But for this we need first Gödel’s insight about the inevitable 
presence of undecidable sentences in formal systems, and secondly, Derrida’s insight 
about the role of this undecidability in grounding the possibility of reference.

4. The Gödelian Insight

Let us examine these insights one by one. What Gödel showed in his famous 1931 
paper “On Formally Undecidable Propositions Of Principia Mathematica And Related 
Systems” (Gödel 1992) is that – although we cannot establish true but unprovable 
sentences inside a formal system – we can always produce undecidable formulas 
inside such a system on strictly formal grounds. He demonstrated this in two steps, 
both of which required remarkable genius and neither of which will I be able to 
represent in any depth, so I am just giving a sketch of Gödel’s procedure:14

First, he proved that statements about the formal system can be translated into 
statements in the formal system. Thus, statements such as “formula x has a proof 
in the system” can be directly transformed into well-formed formulas of the system 
itself. He showed, in other words, that formal systems are capable of reflecting their 
own operations, that they can represent their own syntax.

Second, he showed how we can formulate an undecidable sentence on this basis. 
As illustration, consider the sentence “the nth well-formed formula is not on the list 
of TNT theorems.” This is a clear and unambiguous statement about the functioning 

14 Several accessible accounts of Gödel’s procedure are now available, such as (Hofstadter 1979) (Berto 2009) (Smullyan 
1992) (Franzén 2005, 10–57) (Wright 1994, 185-186). In what follows I will adapt – and further simplify – Roger Penrose’s 
simple but elegant account in The Emperor’s New Mind (Penrose 1989, 138–141).
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of TNT, so – on the basis of the first point above – we can formulate it as a well-
formed formula of TNT itself. As such it will be listed among the well-formed 
formulas of the system (such a listing, as we have seen, is always possible) and will 
be assigned a unique number: the kth well-formed formula, say. Now n is a free 
variable in our formula, which means that it can be replaced by any concrete natural 
number. This formula will, therefore, give rise to an infinite family of formulas: “the 
first well-formed formula is not on the list”, “the second well-formed formula is not 
on the list”, etc. In the case of each of these formulas we can check if what they state 
is actually true or not. We can seek a proof for the first well-formed formula, then 
for the second, and so on. In each case, we will in theory be able to determine if the 
given formula has a proof inside the system or not. But what happens if we come to 
the kth formula on the list and substitute k for n? This will be a perfectly legitimate 
formula, just like any other on the list of well-formed formulas. However, it will 
make a statement, curiously enough, about itself. It will state, to be precise, that it is 
not on the list of theorems.15 Will this formula then be on the list of theorems? If it 
is, then we will end up with a contradiction, for what the formula states is precisely 
that it is not on the list. If, on the other hand, it is not on the list, then – by a law 
of formal logic – its negation must be on the list, which asserts that the original 
formula is on the list, and this will again lead us to a contradiction. This means that 
neither the formula itself nor its negation can be on the list of theorems – assuming 
only that the formal system is consistent. This formula, in other words, will be 
neither provable, nor disprovable: it will be undecidable.

This is of course a rather drastically simplified and not even entirely consistent 
demonstration of Gödel’s procedure, but the idea relevant for us here is that Gödel 
could demonstrate beyond doubt that in any formal system of the type we are 
discussing here there will always be such undecidable formulas. How does this modify 
the situation in regard to our ambition to ground the reference of formal systems? 
Remember that for establishing the correspondence conception of truth we need – 
apart from assuming the consistency of the system – true but unprovable formulas. 
Since by Tarski’s Theorem we cannot capture the concept of truth inside the system, 
we do not seem to be much better off now that we have established the existence 

15 Penrose establishes this by first pointing out that a list of all propositional functions that depend on a single variable can 
in principle be compiled. Then he shows that the propositional function that asserts that the nth propositional function 
on this list has no proof in the system is a propositional function that depends on a single variable and must therefore 
be included in the list comprised of all such propositional functions. This means that it must have a unique ordinal 
number assigned to it, say it is the kth propositional function on the list. Finally, Penrose obtains the Gödel sentence by 
substituting k for n, which results in the kth propositional function asserting about itself that it has no proof in the system. 
(Penrose 1989, 138–140)
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of undecidable formulas. Undecidable formulas are certainly unprovable, but why 
should they be true? This question cannot be answered in a fully convincing way. 
Assuming the truth of undecidable sentences will always remain just an assumption, 
which we need in order to account for the reference of formal systems. 

However, there is a sense in which we are still somewhat better off once we have 
undecidable sentences. For if we have undecidable sentences, then it is clear that 
we can assume the existence of true but unprovable sentences. We can do so simply 
because the undecidable formula is clearly beyond what the system can mechanically 
control: since it is undecidable, it is clearly unprovable and as such it could be true for 
all we know. There is no way we can formally prove the contrary by means of our 
formal system. What is more, with this conception in mind we become capable of 
developing a new sense of the truth of true but unprovable sentences (which we must 
illegitimately assume anyway), a sense which does not require presupposing objective 
existence. It is for this step that we need the Derridean insight. Let us see how.

5. The Derridean Insight

So, what does the truth of the undecidable sentence (or of its negation)16 mean if we 
choose to assume it to be true? The intuitive interpretation is of course that it means 
that it is true in the correspondence sense – that is, by virtue of referring to an 
objective state of affairs which exists. This was actually Gödel’s own interpretation, 
too: if we have two contradictory sentences such that one is the negation of the 
other, we must conclude that one of them is true. In the case of the undecidable 
sentence, we know furthermore that neither it nor its negation can be proved, and 
this leads directly to the conclusion that there are truths that simply cannot be 
captured by the formal system. If we interpret truth here in the correspondence 
sense, then this means that there are certain states of affairs which our system just 
cannot grasp. No matter how we set up a formal system, the reality that it refers to 
will always exceed the capacities of the system: it will always be in excess of whatever 
system we design to refer to it.17 For Gödel, therefore, the inevitable presence of 

16 If we view the undecidable formula simply as a syntactic construction, the assumption of its truth is just as valid as the 
assumption of the truth of its negation, since the requirement of consistency only demands that they must not both be 
true at the same time. In what follows I will only talk about assuming the truth of the undecidable formula itself, but the 
argument can also apply – with some complications that I will not go into here – if we assume the truth of its negation.
17 Gödel was of course more subtle than this when formulating his position (cf. especially his (Gödel 1995a) and (Gödel 
1995b)). Nonetheless, he was a mathematical Platonist, meaning that he believed in the independent existence of an 
objective mathematical reality beyond that which can be grasped in formal systems. For an account of Gödel which 
emphasizes this realist streak in his thought see (Goldstein 2005).
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undecidable formulas marks a fundamental incapacity of any formal system, the 
impossibility of grasping reality, or even a well-defined segment of it, in its entirety. 
This is also expressed in the name of the theorems he based on his demonstration 
of the existence of formally undecidable sentences: these are called the incompleteness 
theorems, implying that any formal system is incomplete in the sense that it cannot 
prove all truths about the reality it describes.18 

Must we, however, interpret the inevitable presence of undecidable sentences 
as a limitation? One of the central insights of deconstruction is that we do not 
need to. For we can also consider such limitations, such impossibilities, as necessary 
conditions for a possibility. As Giorgio Agamben puts it in “Pardes,” his homage 
to Derrida:

It does not suffice, however, to underline (on the basis of Gödel’s theorem) 
the necessary relation between a determinate axiomatics and undecidable 
propositions: what is decisive is solely how one conceives this relation. It is 
possible to consider an undecidable as a purely negative limit (Kant’s Schranke), 
such that one then invokes strategies (Bertrand Russell’s theory of types or Alfred 
Tarski’s metalanguage) to avoid running up against it. Or one can consider it as 
a threshold (Kant’s Grenze), which opens onto an exteriority and transforms and 
dislocates all the elements of the system. (Agamben 1999, 214)

Agamben’s point is of course that deconstruction follows the second path. 
Derrida’s undecidables, such as the hymen, the trace, the supplement, the gift, 
hospitality, etc., are thresholds. Naturally, they mark a fundamental impossibility, 
but an impossibility which is also the condition of the possibility of that which they 
render impossible. And I think we can use this insight to reinterpret the function 
of the inevitable undecidable formula in any formal system. In particular, we can 
interpret the impossibility of reference marked by Gödel’s undecidable formula 
in a given formal system as the condition of the possibility for this system to be 
referential at all, to make reference to something other than itself. We have seen that 
without undecidable sentences, formal systems cannot be considered referential: 
they cannot refer to anything other than themselves, since they are only capable 
of exhibiting “an idle running of language.” With undecidable sentences, however, 
it becomes possible to assume the truth of these sentences and thus we become 
capable of accounting for reference. The undecidable sentence itself is of course a 

18 This is, incidentally, the line the famous “Gödelian arguments” of John Lucas, Roger Penrose, and Stanley Jáki also take 
(Lucas 1961) (Lucas 1996) (Penrose 1989) (Penrose 1994) ( Jáki 1966) ( Jáki 2004).
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point at which the functioning of the system breaks down, thus marking a point 
where reference is certainly impossible. As such, however, it provides a ground for 
assuming the possibility of reference. In fact, it is alone capable of establishing that 
a formal system can be more than just “an idle running of language”; it can alone 
guarantee that we can think of the other sentences of the system as referential in the 
correspondence sense; that is, as being made true or false according to the existence 
or non-existence of certain objective facts.

For this, however, it is not enough to have undecidable sentences. We must also 
assume the undecidable sentence to be true, and this brings us back to the original 
question: in what sense can the undecidable sentence be assumed to be true? We 
have seen that assuming its truth in the correspondence sense leads directly to 
Gödel’s Platonism, to the excess of reality over the system, and thus inevitably to a 
naïve presupposition of the objective existence of reality. This, however, is not the 
only possible interpretation of the truth of undecidable sentences. For – and this is 
another Derridean insight – the undecidable can also be interpreted as marking – as 
Derrida puts it in relation to the hymen in The Double Session – “the irreducible excess 
of the syntactic over the semantic” (Derrida 1981b, 230).

That this possibility is indeed available becomes clear if we examine the situation 
arising from the requirement of true but unprovable sentences. For, as we have seen, 
we need true but unprovable sentences to be able to ground reference for a formal 
system in the correspondence sense. This means that – since we cannot establish 
the existence of such sentences by a formal proof – we must presuppose them before 
establishing the correspondence conception of truth. Therefore, the truth of the 
undecidable sentences is a precondition of this conception and does not need to be 
bound by it. Assuming that the undecidable sentence is true in the correspondence 
sense can at best be a retrospective projection of a sense of “true” that can only be 
established after we have presupposed the truth of undecidable sentences. Therefore, 
while it is true that the correspondence conception of truth depends on and is 
determined by the truth of the undecidable formula, the sense in which the latter is 
true need not be determined by the former.

The question that remains to be asked is “Can the undecidable formula (or its 
negation) be assumed to be true in any sense other than correspondence?” And this 
is where the Derridean insight cited above can again come to our assistance. For 
it highlights the possibility that the undecidable formula can be seen as referring 
solely to the syntactic system itself. If we interpret the truth of the undecidable 
formula in this way, then it will be true not of some preexisting, independent and 
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objective reality, but of the formal system itself as a referential system. For if we do 
not presuppose the objective existence of reality, then the truth of the undecidable 
formula will simply mean that in any system we set up to refer to some reality there 
will always be formulas that must be true regardless of how things are in reality. The 
truth of such a formula will therefore depend not on an objective, independently 
existing state of affairs, but only on the formal requirements of our system, only on 
its syntax. The truth of undecidable formulas will thus attest to the independence 
of the system from any reality and will mark the excess of the syntactic system over 
whatever reality it refers to.19

Relying on this sense of the truth of the undecidable formula we become 
capable of grounding an account of truth as correspondence between a formal 
system and reality, or, in other words, we become capable of accounting for the 
reference of formal systems. What is more, we become capable of doing this without 
a naïve presupposition of objective existence. For by exhibiting a formula whose 
truth certainly does not depend on any objective existence, we can establish the 
independence of the formal system, its autonomy from any reality that it may refer 
to. We can establish, in other words, that the formal system is not reality. And once 
we have thus established the independence of the system, we become capable of 
assuming that it is independent from something other than itself. In this way, therefore, 
what seemed to be an incapacity, an impossibility in the formal system, turns out to 
be the ultimate condition of the possibility of grounding its reference. Because the 
system can be thought of as independent, we can think that it is related to something 
entirely other than itself.
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